fbpx

常见问题

Welcome to be CSSUN Partner

Distributor, Retailer, Wholesale Join Us With Any Of These Roles

技术服务

急需电池?

您可以通过任何您方便的方式联系我们。我们全天候 24/7 通过:sales@cssun.net 或 WhatsApp/微信:+8613798341910
新产品
Power Battery

任何问题欢迎咨询我们的销售团队

CS电池  is  a  professional  battery  company established  in  May  2003,  CS电池 manufactures and sells environmentally friendly Lithium and Accumulator batteries.  CS电池  introduces  and  develops  advanced  technology,  and  adopts  e  world s most  advanced  production  equipments  and  testing  measures to ensure long product life, hig energ density,  an environmenta protectio features  such  as  cadmium-free, leading  e  domestic  counterparts.

A: 电池的容量是指电池中的活性物质能参与电化学反应的电量称为电池的容量,即充电后电池能保持的电荷量。单位是“啊”(Ah)和1安(A)。电流放电1小时,容量为1安时(Ah)。假设平均电流为4A,电池在电池终止电压下放电时间为3小时,电池容量为12Ah(此处不计算放电效能)。
A: 是指电池工作时对流过电池的电流的阻值。有欧姆内阻和极化内阻两部分。电池内阻大会导致电池放电工作电压降低,放电时间缩短。内阻主要受电池材料、制造工艺、电池结构等因素影响。是衡量电池性能的重要参数。
A: 不建议快速充电,因为它对电池有害。
A: 电池在充电过程中,一部分电能转化为化学能,一部分电能转化为热能和其他能量。充电电池发热是正常现象,但温度过高时,应检查充电电流是否过大或电池内部短路。
A: 在规定的充电电压和电流条件下,电池在单位时间内接受的充电量。
A: 电池允许有少量发热,无论是在使用中还是在充电过程中,但不允许异常发热。异常发热明显,用手摸电池壳就能感觉到。热量对电池非常有害。热量首先使电解液水分蒸发并逐渐干涸,继而导致充电效率降低、极板变形、内阻增大、机械部件加速氧化、烧坏极板或隔膜,最终表现为电池容量下降和寿命缩短。
A: 连接松动会导致连接处的电阻增大,容易在充放电时产生火花。严重时会引起发热和火灾,发生事故。
A: 虽然铅酸蓄电池在出厂时已经经过严格挑选,但使用一定时间后,会出现不均匀性,并逐渐加重。充电器无法识别或补充充电不足。如何平衡电池容量?它必须由人类来执行。用户在电池组使用的中后期,定期、不定期地测量每节电池的开路电压。电压较低的,单独充电,使电压和容量与其他电池一致,尽量缩小差距。
A: 不建议更换铅酸电池组的部分电池。
A: 是的,自 2003 年以来,我们是中国广东省的一家专业电池制造商。我们自己车间生产铅板。
A: 铅酸电池不会产生任何类型的记忆。这意味着您不必在充电前对电池进行深度放电或完全放电。为了获得最佳寿命和性能,我们通常建议将电池额定容量放电 20 至 50%,即使电池能够循环至 90%。
A: 在较高温度下(高于 77º F (25º C)),电池容量通常会增加,但通常会以电池寿命为代价。较高的温度也会增加自放电特性。较低的温度(低于 77º F (25º C))会降低电池容量并延长电池寿命。较低的温度会减缓自放电。因此,在等于或略低于 77º F (25º C) 的温度下运行电池将优化性能和寿命。
A: 您可能听说过它说“您需要一个 3 级充电器”。我们已经说过了,我们还会再说一遍。最好的电池充电器是三级充电器。它们也被称为“智能充电器”或“微处理器控制的充电器”。基本上,这些类型的充电器安全、易于使用,并且不会对电池过度充电。我们销售的几乎所有充电器都是 3 级充电器。好吧,所以很难否认 3 级充电器可以工作,而且效果很好。但这是百万美元的问题:3 个阶段是什么?是什么让这些充电器如此与众不同且高效?是不是真的值得吗?让我们逐一了解每个阶段:

第一阶段 |批量收费

电池充电器的主要目的是为电池充电。第一阶段通常是实际使用充电器额定的最高电压和安培数的阶段。在不使电池过热的情况下可以施加的电荷水平称为电池的自然吸收率。对于典型的 12 伏 AGM 电池,进入电池的充电电压将达到 14.6-14.8 伏,而富液电池可能更高。对于胶体电池,电压不应超过14.2-14.3伏。如果充电器是 10 安培充电器,并且如果电池电阻允许,充电器将输出 10 安培的全部电流。这个阶段将为严重耗尽的电池充电。这个阶段没有过度充电的风险,因为电池还没有充满。

 

第 2 阶段 |吸收电荷

智能充电器会在充电前检测电池的电压和电阻。读取电池后,充电器确定在哪个阶段正确充电。一旦电池达到 80%* 充电状态,充电器将进入吸收阶段。此时大多数充电器将保持稳定的电压,而安培数下降。进入电池的电流较低,可以安全地为电池充电,而不会使其过热。

这个阶段需要更多的时间。例如,与散装阶段的第一个 20% 相比,电池的最后一个剩余 20% 需要更长的时间。电流不断下降,直到电池几乎达到满容量。

*充电吸收阶段将进入的实际状态将因充电器而异

第 3 阶段 |浮充

一些充电器早在 85% 充电状态时就进入浮动模式,而其他充电器则在接近 95% 时开始。无论哪种方式,浮动阶段都会让电池一直通过并保持 100% 充电状态。电压将逐渐下降并保持在稳定的 13.2-13.4 伏特,这是 12伏电池可以承受的最大电压.电流也会减少到被认为是涓涓细流的程度。这就是术语“涓流充电器”的来源。它本质上是浮动阶段,始终有电荷进入电池,但只能以安全速率确保完全充电状态,仅此而已。大多数智能充电器此时不会关闭,但一次将电池置于浮动模式数月甚至数年是完全安全的。

 

电池处于 100% 充电状态是最健康的事情。

 

我们以前说过,我们会再说一遍。最好的电池充电器是 三段式智能充电器.它们易于使用且无后顾之忧。您永远不必担心将充电器放在电池上的时间过长。事实上,最好还是让它开着。当电池未充满电时,极板上会形成硫酸盐晶体,这会夺走您的电力。如果您在淡季或假期将动力运动留在棚子里,请将电池连接到 3 级充电器。这将确保您的电池随时准备启动。

A: 过放是由于电池容量不足导致电池过度工作而引起的问题。放电深度超过 50%(实际上远低于 12.0 伏或 1.200 比重)会显着缩短电池的循环寿命,而不会增加可用的循环深度。充电不频繁或充电不足也会导致过度放电症状,称为硫化。尽管充电设备调节正常,但过度放电的症状表现为电池容量损失和低于正常比重。当电解液中的硫与极板上的铅结合并形成硫酸铅时,就会产生硫酸盐。一旦出现这种情况,船用电池充电器将无法去除硬化的硫酸盐。通常可以通过使用外部手动电池充电器进行适当的脱硫或均衡充电来去除硫酸盐。为完成这项任务,富液板电池必须以 6 至 10 安培的电流充电。在每个电池 2.4 到 2.5 伏特下,直到所有电池自由放气并且它们的比重恢复到它们的全电荷浓度。密封的 AGM 电池应达到每个电池 2.35 伏,然后放电至每个电池 1.75 伏,然后必须重复此过程,直到容量恢复到电池。凝胶电池可能无法恢复。在大多数情况下,可以退回电池以完成其使用寿命。充电 交流发电机和浮动电池充电器(包括稳压光伏充电器)具有自动控制功能,可在电池充电时逐渐降低充电速率。需要注意的是,充电时电流减少到几安并不意味着电池已充满电。电池充电器分为三种类型。有手动型、滴流型和自动切换器型。
A: 原电池为普通干电池,只能使用一次。二次电池也叫充电电池,可以多次充放电。我们的电池是二次电池。
A: 最常见的电池额定值是 AMP-HOUR RATING。这是电池容量的测量单位,通过将以安培为单位的电流乘以以小时为单位的放电时间获得。 (示例:提供 5 安培电流 20 小时的电池提供 5 安培乘以 20 小时,或 100 安培小时。)

制造商使用不同的放电周期来产生不同的安培小时。因此,相同容量电池的额定值是 Amp-Hr。除非电池放电小时数合格,否则额定值意义不大。出于这个原因,安培小时额定值只是评估电池容量以供选择的一般方法。电池内部组件的质量和技术构造将产生不同的所需特性,而不会影响其安培小时额定值。例如,有 150 安培小时的电池不能在一夜之间支持电力负载,如果要求重复这样做,就会在其生命早期失效。相反,有 150 安培小时的电池可以在需要充电之前为电力负载供电数天,并且可以充电数年。必须检查以下额定值,以便为特定应用评估和选择合适的电池:冷启动安培数和储备容量是业界用来简化电池选择的额定值。
A: 储备容量是电池在 25 安培放电下可以维持有用电压的分钟数。分钟额定值越高,电池在需要充电之前运行灯、泵、逆变器和电子设备的能力就越大。 25 安培。 Reserve Capacity Rating 比 Amp-Hour 或 CCA 更现实,作为深循环服务容量的衡量标准。以高冷启动额定值推广的电池易于制造且成本低廉。市场上充斥着它们,但它们的储备容量、循环寿命(电池可以提供的放电和充电次数)和使用寿命都很差。将储备容量设计到电池中既困难又昂贵,并且需要更高质量的电池材料。
A: 放电效率是指电池在一定放电条件下放电至终止电压时的实际功率与标称容量的比值。主要受放电倍率、环境温度、内阻等因素影响。一般来说,放电率越高,放电效率越低;温度越低,放电效率越低。
A: 浮动应用要求电池持续充电,偶尔放电。循环应用定期对电池进行充电和放电。

A: Generally, they can last for several years to a decade or more. The service life of lithium batteries varies depending on several factors. The lifespan is influenced by factors such as the quality of the battery, charging and discharging patterns, operating temperature, and the depth of discharge. High-quality lithium batteries with proper usage and maintenance tend to have longer lifespans.

A: There are several ways to determine if a lithium battery needs replacement

  1.   Monitor the battery’s capacity. If the battery doesn’t hold a charge as long as it used to and the performance significantly deteriorates, it might be time for a replacement.
  2.   If the battery shows signs of swelling or physical damage.
  3.   Frequent overheating or abnormal charging patterns could suggest that the battery is no longer functioning properly and requires replacement.
  4.   Checking the battery’s voltage and comparing it to the manufacturer’s specifications can also provide clues about its condition.

A: There are several points you can know about the effects of low temperature on lithium batteries.

  1. Reduced capacity.
  2. Slower charging and discharging.
  3. Decreased performance and efficiency.
  4. Potential damage to the battery structure.

A: The main differences lie in several aspects. Firstly, the voltage output of high-voltage batteries is significantly higher than that of ordinary batteries. High-voltage batteries can provide stronger power, which is suitable for applications that require large amounts of energy and high power output, such as in some industrial equipment and electric vehicles. Ordinary batteries, on the other hand, usually have lower voltage and are commonly used in small electronic devices like remote controls and toys. Secondly, in terms of structure and materials, high-voltage batteries often have more complex designs and use more advanced materials to withstand higher voltages and ensure safety and performance. Another difference is in charging and discharging characteristics. High-voltage batteries typically have different charging and discharging protocols and requirements compared to ordinary batteries.

A: Ternary lithium batteries have higher energy density but are less stable. Lithium iron phosphate batteries are more stable and have longer cycle life but lower energy density.

A: Generally not. As long as they are installed correctly and the charging equipment is suitable, the installation type usually doesn’t directly influence the charging efficiency.

A: The recycling process of lithium batteries usually involves collection, dismantling, separation of materials, and subsequent processing to extract valuable components such as lithium, cobalt, and nickel for reuse.

A: Yes, there are limitations. The number of charging and discharging cycles for lithium batteries varies depending on factors such as the battery’s quality, chemistry, and usage conditions. Generally, high-quality lithium batteries can withstand a few 1000 charge-discharge cycles before their capacity significantly declines.

A: Generally, a higher state of charge usually leads to a slightly higher self-discharge rate for lithium batteries.

A: Excessive vibration can potentially cause damage to the internal structure of lithium batteries and affect their performance and lifespan.

A: Lithium batteries can be used in a humid environment to a certain extent, but excessive moisture can cause corrosion and other issues.

A: Generally, a good battery management system can optimize charging and discharging processes, protect the battery from overcharge and over discharge, and enhance the overall performance and lifespan of the lithium battery.

A: The shelf life of lithium batteries when not in use can range from several months to a few years, depending on storage conditions such as temperature and state of charge.

A: Not necessarily. The portability of a battery doesn’t directly determine its working efficiency. A lighter battery can be designed to maintain or even improve efficiency through advancements in technology and materials. For instance, new battery chemistries or improved electrode designs could lead to higher energy density and better performance without sacrificing efficiency. However, it’s important to note that in some cases, if the focus is solely on reducing weight without adequate engineering and optimization, there could potentially be a slight impact on efficiency. But with proper research and development, this can be minimized or avoided altogether.

A: Always follow the manufacturer’s instructions, avoid short-circuiting, do not expose to fire or high temperatures, and handle with care to prevent physical damage.

A: It depends on the device. Simple devices like remote controls might be easy to install by yourself, but for complex electronics, it’s often better to seek professional assistance

A: Avoid short circuits, wear protective gear, and make sure the vehicle is turned off and the battery terminals are clean.

A: Power on the device and monitor its performance. Check for any error messages or abnormal behavior.

A: The LiFePO4 battery consists of lithium ions, iron ions, phosphate ions, and a conductive matrix.

A: If fact, LiFePO4 battery has a stable chemical structure, low risk of thermal runaway, and is less prone to fire or explosion.

A: LiFePO4 battery’s energy density is relatively lower than some other lithium-ion chemistries, but it compensates with better safety and cycle life.

A: LiFePO4 battery usually has a cycle life of several thousand charge-discharge cycles.

A: LiFePO4 battery has a relatively low self-discharge rate, allowing for longer storage without significant loss of charge.

A: LiFePO4 battery is often more cost-effective in the long run due to its long cycle life and stability.

A: A system that can accurately monitor voltage, current, and temperature is essential for optimal performance and safety.

A: Fast charging methods may have slightly lower efficiency compared to slower, more controlled charging.

A: Yes, LiFePO4 battery is suitable for solar and wind energy storage due to its long cycle life and stability.

A: Yes, it most likely will. Self-modifying a battery is a risky and often unadvised practice. Such modifications can disrupt the battery’s internal structure and circuitry, which can lead to imbalances in the charging and discharging processes. This imbalance can significantly reduce the battery’s working efficiency and may even cause damage or pose safety hazards. Moreover, without professional knowledge and proper equipment, it’s difficult to ensure that the modifications are done accurately and safely, which further increases the likelihood of negative impacts on the battery’s performance and lifespan.

A: Yes, these lithium batteries have been activated and tested, and can be used directly.

A: Yes, we provide a warranty for a specified period. Please refer to the warranty terms provided with the product for details.

A: Regulations regarding battery transport vary by country and mode of transport. Please check the latest airline regulations before traveling or consult our customer service for details.

A: This could be due to battery aging or operating in high ambient temperatures. Consider replacing the battery or optimizing usage conditions.

A: In most cases, yes, but it’s recommended to use the charger that comes with the product for optimal performance and safety.

A: Yes, but you must comply with local and international shipping regulations and be aware of transport restrictions for different types of lithium batteries.

你要买什么?

Welcome CONTACT CSSUN

虽然我们擅长烟雾信号,但我们可以通过更简单的方式与您取得联系并回答您的问题。

电子邮件 *
电话/WhatsApp *
信息 *
PS:我们保证您的信息安全,不会泄露!