fbpx

FAQs

Welcome to be CSSUN Partner

Distributor, Retailer, Wholesale Join Us With Any Of These Roles

Technical Service

Need Battery Urgent?

You can contact us in any way that is convenient for you. We are available 24/7 via: sales@cssun.net or WhatsApp/WeChat: +8613798341910
New Products
Power Battery

Any question welcome inquiry our sales Team

CSSUN  is  a  professional  battery  company established  in  May  2003,  CSSUN manufactures and sells environmentally friendly Lithium and Accumulator batteries.  CSSUN  introduces  and  develops  advanced  technology,  and  adopts  the  world s most  advanced  production  equipments  and  testing  measures to ensure long product life, hig energ density,  an environmenta protectio features  such  as  cadmium-free, leading  the  domestic  counterparts.

A: The capacity of the battery refers to the amount of electricity that the active material in the battery can participate in the electrochemical reaction is called the capacity of the battery, that is, the amount of charge that the battery can hold after charging. The unit is “Ah” (Ah) and 1 A (A). The current is discharged for 1 hour, and the capacity is 1 ampere hour (Ah). Assuming that the average current is 4A, the discharge time is 3 hours when the battery is discharged at the termination voltage of the battery, and the battery capacity is 12Ah (the discharge is not calculated here) effectiveness).
A: It refers to the resistance to the current flowing through the battery when the battery is working. There are two parts: ohmic internal resistance and polarization internal resistance. Large internal resistance of the battery will cause the battery’s discharge working voltage to decrease and shorten the discharge time. The internal resistance is mainly affected by the battery material, manufacturing process, battery structure and other factors. Is an important parameter to measure battery performance.
A: Fast charging is not recommended as it’s harmful for the battery.
A: During the charging process of the battery, part of the electrical energy is converted into chemical energy, and part of the electrical energy is converted into thermal energy and other energy. It is normal for the rechargeable battery to heat up, but when the temperature is too high, you should check whether the charging current is too large or a short circuit occurs inside the battery.
A: Under the specified charging voltage and current conditions, the amount of charge the battery accepts per unit time.
A: The battery is allowed to have a small amount of heat, whether in use or during charging, but abnormal heat is not allowed. The abnormal fever is obvious, and you can feel it by touching the battery case with your hand. Heat is very harmful to the battery. The heat first causes the electrolyte water to evaporate and gradually dry up, and then decreases the charging efficiency, deformation of the plates, increased internal resistance, accelerated oxidation of mechanical parts, burned out plates or separators, and finally manifests in reduced battery capacity and shortened life.
A: A loose connection will cause the resistance at the connection to increase, which will easily cause sparks during charging and discharging. In severe cases, it will cause heat and fire, and an accident will occur.
A: Although the lead-acid battery has been strictly selected when it leaves the factory, after a certain period of use, the non-uniformity will appear and gradually increase. The charger can’t recognize or supplement the undercharge. How to balance the battery capacity? It must be performed by humans. The user measures the open circuit voltage of each battery periodically and irregularly during the middle and late periods of battery pack use. For lower voltages, recharge separately to make the voltage and capacity consistent with other batteries, and try to reduce their gap.
A: Partial battery replacement of lead acid battery banks is not recommended.
A: Yes, we are a professional battery manufacturer in Guandong province, China since 2003. We produce Lead plates by ourselves workshop.
A: Lead acid batteries do not develop any type of memory. This means that you do not have to deep discharge or completely discharge a battery before recharging it. For optimum life and performance, we generally recommend a discharge of 20 to 50% of the batteries rated capacity even though the battery is capable of being cycled to 90%.
A: At higher temperatures (above 77º F (25º C)) battery capacity generally increases, usually at the cost of battery life. Higher temperatures also increase the self-discharge characteristic. Colder temperatures (below 77º F (25º C)) will lower battery capacity and prolong battery life. Cooler temperatures will slow self-discharge. Therefore, operating batteries at temperatures at or slightly below 77º F (25º C) will optimize both performance and life.
A: You may have heard it said “you need a 3 stage charger”. We’ve said it, and we’ll say it again. The best kind of charger to use on your battery is a 3 stage charger. They are also called “smart chargers” or “micro processor controlled chargers”. Basically, these types of chargers are safe, easy to use, and will not overcharge your battery. Almost all of the chargers we sell are 3 stage chargers. Okay, so it’s hard to deny that 3 stage chargers work and they work well. But here’s the million dollar question: What are the 3 stages? What makes these chargers so different and efficient? Is it really worth it? Lets find out by going through each stage, one by one:

Stage 1 | Bulk Charge

The primary purpose of a battery charger is to recharge a battery. This first stage is typically where the highest voltage and amperage the charger is rated for will actually be used. The level of charge that can be applied without overheating the battery is known as the battery’s natural absorption rate. For a typical 12 volt AGM battery, the charging voltage going into a battery will reach 14.6-14.8 volts, while flooded batteries can be even higher. For the gel battery, the voltage should be no more than 14.2-14.3 volts. If the charger is a 10 amp charger, and if the battery resistance allows for it, the charger will put out a full 10 amps. This stage will recharge batteries that are severely drained. There is no risk of overcharging in this stage because the battery hasn’t even reached full yet.

 

Stage 2 | Absorption Charge

Smart chargers will detect voltage and resistance from the battery prior to charging. After reading the battery the charger determines which stage to properly charge at. Once the battery has reached 80%* state of charge, the charger will enter the absorption stage. At this point most chargers will maintain a steady voltage, while the amperage declines. The lower current going into the battery safely brings up the charge on the battery without overheating it.

This stage takes more time. For instance, the last remaining 20% of the battery takes much longer when compared to the first 20% during the bulk stage. The current continuously declines until the battery almost reaches full capacity.

*Actual state of charge Absorption Stage will enter will vary from charger to charger

Stage 3 | Float Charge

Some chargers enter float mode as early as 85% state of charge but others begin closer to 95%. Either way, the float stage brings the battery all the way through and maintains the 100% state of charge. The voltage will taper down and maintain at a steady 13.2-13.4 volts, which is the maximum voltage a 12 volt battery can hold. The current will also decrease to a point where it’s considered a trickle. That’s where the term “trickle charger” comes from. It’s essentially the float stage where there is charge going into the battery at all times, but only at a safe rate to ensure a full state of charge and nothing more. Most smart chargers do not turn off at this point, yet it is completely safe to leave a battery in float mode for months to even years at a time.

 

It’s the healthiest thing for a battery to be at 100% state of charge.

 

We’ve said it before and we’ll say it again. The best kind of charger to use on a battery is a 3 stage smart charger. They are easy to use and worry free. You don’t ever have to worry about leaving the charger on the battery for too long. In fact, it’s best if you DO leave it on. When a battery is not at a fully charged state, sulfate crystal build on the plates and this robs you of power. If you leave your powersports in the shed during off-season or for vacations, please connect the battery to a 3 stage charger. This will ensure that your battery will be ready to start whenever you are.

A: Over-discharging is a problem which originates from insufficient battery capacity causing the batteries to be overworked. Discharges deeper than 50% (in reality well below 12.0 Volts or 1.200 Specific Gravity) significantly shorten the Cycle Life of a battery without increasing the usable depth of cycle. Infrequent or inadequate recharging can also cause over discharging symptoms called SULFATION. Despite that charging equipment is regulating back properly, over discharging symptoms are displayed as loss of battery capacity and lower than normal specific gravity. Sulfate occurs when sulfur from the electrolyte combines with the lead on the plates and forms lead-sulfate. Once this condition becomes occurs, marine battery chargers will not remove the hardened sulfate. Sulfate can usually be removed by a proper desulfation or equalization charge with external manual battery chargers. To accomplish this task, the flooded plate batteries must be charged at 6 to 10 amps. at 2.4 to 2.5 volts per cell until all cells are gassing freely and their specific gravity returns to their full charge concentration. Sealed AGM batteries should be brought to 2.35 volts per cell and then discharged to 1.75 volts per cell and then this process must be repeated until the capacity returns to the battery. Gel batteries may not recover. In most cases, the battery may be returned to complete its service life.CHARGING Alternators and float battery chargers including regulated photo voltaic chargers have automatic controls which taper the charge rate as the batteries come up in charge. It should be noted that a decrease to a few amperes while charging does not mean that the batteries have been fully charged. Battery chargers are of three types. There is the manual type, the trickle type, and the automatic switcher type.
A: Primary batteries are ordinary dry batteries, can be used once only. Secondary batteries are also called rechargeable batteries, can be charged and discharged for many time. Our batteries are secondary batteries.
A: The most common battery rating is the AMP-HOUR RATING. This is a unit of measurement for battery capacity, obtained by multiplying a current flow in amperes by the time in hours of discharge. (Example: A battery which delivers 5 amperes for 20 hours delivers 5 amperes times 20 hours, or 100 ampere-hours.)

Manufacturers use different discharge periods to yield an different Amp-Hr. Rating for the same capacity batteries, therefore, the Amp-Hr. Rating has little significance unless qualified by the number of hours the battery is discharged. For this reason Amp-Hour Ratings are only a general method of evaluating a battery’s capacity for selection purposes. The quality of internal components and technical construction within the battery will generate different desired characteristics without effecting its Amp-Hour Rating. For instance, there are 150 Amp-Hour batteries that will not support an electrical load overnight and if called upon to do so repetitively, will fail early in their life. Conversely, there are 150 Amp-Hour batteries that will operate an electrical load for several days before needing recharging and will do so for years. The following ratings must be examined in order to evaluate and select the proper battery for a specific application: COLD CRANKING AMPERAGE and RESERVE CAPACITY are ratings used by the industry to simplify battery selection.
A: Reserve capacity is the number of minutes a battery can maintain a useful voltage under a 25 ampere discharge. The higher the minute rating, the greater the battery’s ability to run lights, pumps, inverters, and electronics for a longer period before recharging is necessary. The 25 Amp. Reserve Capacity Rating is more realistic than Amp-Hour or CCA as a measurement of capacity for deep cycle service. Batteries promoted on their high Cold Cranking Ratings are easy and inexpensive to build. The market is flooded with them, however their Reserve Capacity, Cycle Life (the number of discharges and charges the battery can deliver) and Service life are poor. Reserve Capacity is difficult and costly to engineer into a battery and requires higher quality cell materials.
A: Discharge efficiency refers to the ratio of actual power to nominal capacity when battery discharges at the ending voltage in certain discharge conditions. It is mainly affected by factors such as discharge rate, environmental temperature, internal resistance. Generally, the higher the rate of discharge is, the lower the discharge efficiency will be; the lower the temperature is, the lower the discharge efficiency will be.
A: A float application requires the battery to be on constant charge with an occasional discharge. Cycle applications charge and discharge the battery on a regular basis.

A: Generally, they can last for several years to a decade or more. The service life of lithium batteries varies depending on several factors. The lifespan is influenced by factors such as the quality of the battery, charging and discharging patterns, operating temperature, and the depth of discharge. High-quality lithium batteries with proper usage and maintenance tend to have longer lifespans.

A: There are several ways to determine if a lithium battery needs replacement

  1.   Monitor the battery’s capacity. If the battery doesn’t hold a charge as long as it used to and the performance significantly deteriorates, it might be time for a replacement.
  2.   If the battery shows signs of swelling or physical damage.
  3.   Frequent overheating or abnormal charging patterns could suggest that the battery is no longer functioning properly and requires replacement.
  4.   Checking the battery’s voltage and comparing it to the manufacturer’s specifications can also provide clues about its condition.

A: There are several points you can know about the effects of low temperature on lithium batteries.

  1. Reduced capacity.
  2. Slower charging and discharging.
  3. Decreased performance and efficiency.
  4. Potential damage to the battery structure.

A: The main differences lie in several aspects. Firstly, the voltage output of high-voltage batteries is significantly higher than that of ordinary batteries. High-voltage batteries can provide stronger power, which is suitable for applications that require large amounts of energy and high power output, such as in some industrial equipment and electric vehicles. Ordinary batteries, on the other hand, usually have lower voltage and are commonly used in small electronic devices like remote controls and toys. Secondly, in terms of structure and materials, high-voltage batteries often have more complex designs and use more advanced materials to withstand higher voltages and ensure safety and performance. Another difference is in charging and discharging characteristics. High-voltage batteries typically have different charging and discharging protocols and requirements compared to ordinary batteries.

A: Ternary lithium batteries have higher energy density but are less stable. Lithium iron phosphate batteries are more stable and have longer cycle life but lower energy density.

A: Generally not. As long as they are installed correctly and the charging equipment is suitable, the installation type usually doesn’t directly influence the charging efficiency.

A: The recycling process of lithium batteries usually involves collection, dismantling, separation of materials, and subsequent processing to extract valuable components such as lithium, cobalt, and nickel for reuse.

A: Yes, there are limitations. The number of charging and discharging cycles for lithium batteries varies depending on factors such as the battery’s quality, chemistry, and usage conditions. Generally, high-quality lithium batteries can withstand a few 1000 charge-discharge cycles before their capacity significantly declines.

A: Generally, a higher state of charge usually leads to a slightly higher self-discharge rate for lithium batteries.

A: Excessive vibration can potentially cause damage to the internal structure of lithium batteries and affect their performance and lifespan.

A: Lithium batteries can be used in a humid environment to a certain extent, but excessive moisture can cause corrosion and other issues.

A: Generally, a good battery management system can optimize charging and discharging processes, protect the battery from overcharge and over discharge, and enhance the overall performance and lifespan of the lithium battery.

A: The shelf life of lithium batteries when not in use can range from several months to a few years, depending on storage conditions such as temperature and state of charge.

A: Not necessarily. The portability of a battery doesn’t directly determine its working efficiency. A lighter battery can be designed to maintain or even improve efficiency through advancements in technology and materials. For instance, new battery chemistries or improved electrode designs could lead to higher energy density and better performance without sacrificing efficiency. However, it’s important to note that in some cases, if the focus is solely on reducing weight without adequate engineering and optimization, there could potentially be a slight impact on efficiency. But with proper research and development, this can be minimized or avoided altogether.

A: Always follow the manufacturer’s instructions, avoid short-circuiting, do not expose to fire or high temperatures, and handle with care to prevent physical damage.

A: It depends on the device. Simple devices like remote controls might be easy to install by yourself, but for complex electronics, it’s often better to seek professional assistance

A: Avoid short circuits, wear protective gear, and make sure the vehicle is turned off and the battery terminals are clean.

A: Power on the device and monitor its performance. Check for any error messages or abnormal behavior.

A: The LiFePO4 battery consists of lithium ions, iron ions, phosphate ions, and a conductive matrix.

A: If fact, LiFePO4 battery has a stable chemical structure, low risk of thermal runaway, and is less prone to fire or explosion.

A: LiFePO4 battery’s energy density is relatively lower than some other lithium-ion chemistries, but it compensates with better safety and cycle life.

A: LiFePO4 battery usually has a cycle life of several thousand charge-discharge cycles.

A: LiFePO4 battery has a relatively low self-discharge rate, allowing for longer storage without significant loss of charge.

A: LiFePO4 battery is often more cost-effective in the long run due to its long cycle life and stability.

A: A system that can accurately monitor voltage, current, and temperature is essential for optimal performance and safety.

A: Fast charging methods may have slightly lower efficiency compared to slower, more controlled charging.

A: Yes, LiFePO4 battery is suitable for solar and wind energy storage due to its long cycle life and stability.

A: Yes, it most likely will. Self-modifying a battery is a risky and often unadvised practice. Such modifications can disrupt the battery’s internal structure and circuitry, which can lead to imbalances in the charging and discharging processes. This imbalance can significantly reduce the battery’s working efficiency and may even cause damage or pose safety hazards. Moreover, without professional knowledge and proper equipment, it’s difficult to ensure that the modifications are done accurately and safely, which further increases the likelihood of negative impacts on the battery’s performance and lifespan.

A: Yes, these lithium batteries have been activated and tested, and can be used directly.

A: Yes, we provide a warranty for a specified period. Please refer to the warranty terms provided with the product for details.

A: Regulations regarding battery transport vary by country and mode of transport. Please check the latest airline regulations before traveling or consult our customer service for details.

A: This could be due to battery aging or operating in high ambient temperatures. Consider replacing the battery or optimizing usage conditions.

A: In most cases, yes, but it’s recommended to use the charger that comes with the product for optimal performance and safety.

A: Yes, but you must comply with local and international shipping regulations and be aware of transport restrictions for different types of lithium batteries.

What Are You Looking For?

Welcome CONTACT CSSUN

While we’re good with smoke signals, there are simpler ways for us to get in touch and answer your questions.

Email *
Tel/WhatsApp *
Message *
PS: We guarantee that your information will be safety and will not be disclosed!